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Problem 1.

a. It is straight forward to see that

π(λ|X) ∝ f(x|θ)π(θ) ∝ λe−(X+µ)λ

This is a Gamma distribution with parameter (2, (X + µ)−1). You may have another
parametrization of Gamma, which gives you a different second parameter.

Pay attention that this is not an exponential distribution. Therefore this is not an
example of conjugate prior.

b. The reason to use the posterior mean as the Bayes estimator is that posterior mean
minimizes the Bayes risk under squared loss. To see this,

RB = EΛ EX|λ(δ − λ)2 = EX Eλ|X(δ − λ)2,

where the second equation is realized by Fubini’s theorem.
A simple expansion can show that Eλ|X(δ−λ)2 is minimized when δ = Eλ|X λ = E(λ|X).

Problem 2.

a. One example comes from question 1, where we have posterior distribution Gamma(2, (X+
µ)−1). The prior has variance µ−2, and the posterior variance is 2(X + µ)−2. Therefore as
long as

µ−2 < 2(X + µ)−2

or
X < (

√
2− 1)µ,

we have a larger posterior variance.
Another example comes from Poisson distribution with conjugate Gamma prior. Suppose

Gamma prior is equipped with parameter (k, θ) and we have one observation. It is known
that the posterior is Gamma(k+X, θ/(θ+ 1)). If we have posterior variance larger than the
prior variance, we need

kθ2 < (k +X)(θ)2(θ + 1)−2

or
X > kθ(θ + 2).
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Other examples may be possible. However, you need X to satisfy certain criteria to make
the posterior variance large. Any example leading to unconditional larger posterior variance
is wrong.

b. By the formula

Var (λ) = E(Var (λ|X)) + Var (E(λ|X)) ≥ E(Var (λ|X)),

we can tell that larger posterior variance can not happen with probability 1, or the inequality
will be reversed.

Problem 3.

a. Delta method is as follows. Suppose that some Xn satisfies

√
n(Xn − θ)

L−→ N(0, σ2).

Then for some function φ which is differentiable at θ, with nonzero first derivative, we have

√
n(φ(Xn)− φ(θ))

L−→ N(0, φ′(θ)2σ2).

b. Using central limit theorem on the MLE estimator, we can obtain

√
n(p̂− p) L−→ N(0, p(1− p)).

The plug-in idea shows that the MLE for λ is λ̂ = log(p̂/(1 − p̂)). Consider the function
φ(x) = log(x/(1− x)), we have φ′(x) = 1/x(1− x). Therefore

√
n(φ(p̂)− φ(p))

L−→ N(0, p(1− p)φ′(p)2).

or √
n(λ̂− λ)

L−→ N(0,
1

p(1− p)
).

Problem 4.

a. The proof of Neyman-Pearson Lemma can be found at Wikipedia.
http://en.wikipedia.org/wiki/Neyman%E2%80%93Pearson_lemma

Another version can be found here. Credit goes to Professor J. Hart of TAMU.
http://www.stat.tamu.edu/~hart/611/neyman.proof.pdf

b. Consider a set of test function {φθ(X)}, corresponding to the null X ∼ Pθ under the
same level α, then the set θ : φθ 6= 1 is a 1− α confidence set for θ.

Reversely, the null X ∼ Pθ can not be rejected if a confidence set of level 1− α covers θ,
under level α.

c. By the Neyman-Pearson lemma, the test function takes the form

φ(X) = 1{f1(X)

f0(X)
> k}
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for some certain k, where f0 and f1 are density functions under null and alternative. Under
the setup of this question, the test function is

φ(X) = 1{ eX

1[0,1](X)
> k}.

Clearly we reject the null when X > 1. For X < 1, since E(φ(X)) = α and φ is monotone
decreasing when X increases in [0, 1], we know that φ is equivalent to 1{X < k′}, where
k′ = α.

To sum up, we reject H0 when X < α or X > 1.
For the second part, by using the alternative form of Neyman-Pearson:

φ(X) = 1{
supθ∈H0

fθ(X)

supθ∈H0∩H1
fθ(X)

< k}.

In this certain situation, we see that

sup
θ∈H0

fθ(X) = 1/X

and
sup

θ∈H0∩H1

fθ(X) = max(1/X, 1/eX) = 1/X.

(Taking derivative to the parameter and solving for the maximum will give you the answer.)
Therefore

supθ∈H0
fθ(X)

supθ∈H0∩H1
fθ(X)

= 1,

which means that the only way out is φ = α, which is a randomized guessing. This example
tells us that only one observation is not enough to distinguish two families of distributions,
even if the families are totally different.
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