
Midterm

MATH 281B

March 7, 2015

Problem 1.

(a). The shape parameter is alpha and the scale parameter is β. The way to determine
this is that if X follows Γ(α, β) then from the density function we can tell that cX is following
Gamma(α, cβ). Therefore β is a scale parameter.

(b). The posterior π(λ|X) is following

π(λ|X) ∝ π(λ)f(X|λ) ∝ λα−1e−λ/βλ
∑

i Xie−nλ = λα+
∑

i Xi−1e−(n+1/β)λ

Observe and we can find that the right hand side is the kernel of the Gamma distribution
with parameter (α +

∑
i Xi, β/(nβ + 1)), so it is belonging to the Gamma family.

(c). From the formula of Gamma distribution, the posterior mean is

(α +
∑
i

Xi) ·
β

(nβ + 1)

The reason to choose posterior mean to be the Bayes estimator is that it minimize the Bayes
risk under the squared loss function. A simple argument can be as follows.

Eλ|X((δ − λ)2) = Eλ|X(δ
2 − 2δλ+ λ2) = δ2 − 2δ E(λ|X) + E(λ2|X)

Then it is trivial to see that δ = E(λ|X) minimizes the function.
(d). Direct algebra shows that

λ̂ = (α +
∑
i

Xi) ·
β

(nβ + 1)
=

1

nβ + 1
· (αβ) + nβ

nβ + 1
· X̄,

where αβ is the mean of the prior, and X̄ is the usual frequentist’s estimator.
(e). From central limit theorem we know that

√
n(X̄ − λ)

D−→ N(0, λ),

since Poisson distribution has mean and variance λ. What’s more we have

nβ

nβ + 1
→ 1,

√
n

nβ + 1
→ 0,
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therefore if we combine the parts together, along with Slutsky’s lemma, we well get

√
n(λ̂− λ) =

√
n(

nβ

nβ + 1
· X̄ − λ) +

√
n

nβ + 1
· (αβ) D−→ N(0, λ)

(f). Since λ̂ is the unique Bayes estimator under the Bayes rule, it is admissible.
(g). It is not true that the posterior variance is guaranteed smaller. However, if we do

the variance decomposition,

Var (λ) = Var (E(λ|X)) + E(Var (λ|X)) ≥ E(Var (λ|X)),

we can see that the prior variance is no less than the expectation of the posterior variance.
Clearly this gives no clue of any guaranteed behavior, but you may claim that with n
increasing, the probability of getting a smaller posterior variance is increasing to 1.

(h). By another version of the variance decomposition, we have

Var (X) = Var (E(X|λ)) + E(Var (X|λ)).

Note that X|λ follows Poisson distribution indexed by λ. Therefore

E(X|λ) = Var (X|λ) = λ.

And clearly
Var (X) = Var (λ) + E(λ) = αβ + αβ2

since λ follows Γ(α, β).

Problem 2.

(a). By the behavior of the sample median we have

√
n(α̂1 − α)

D−→ N(0,
1

4f(α)2
),

where f(·) is the density function of the uniform distribution. Plug in the numbers we can
get √

n(α̂1 − α)
D−→ N(0, 4).

For α̂2, central limit theorem tells us

√
n(α̂2 − α)

D−→ N(0,Var (X1)),

and we have Var (X1) = (α + 2− (α− 2))2/12 = 4/3. Therefore

√
n(α̂2 − α)

D−→ N(0,
4

3
).

Thus we have the ARE as

ARE(α̂2, α̂1) =
4
4
3

= 3

2



(b). If α̂1 uses 1000 samples, then since α̂2 has three times asymptotic efficiency, it will
only need 1000/3 = 334 samples to match the performance.

(c). The MLE, or the UMVUE, based what have been learned in 281A, is found by

α̂3 =
X(1) +X(n)

2
.

There are many ways to show that this estimator is converging to α with speed n, which
is much faster than α̂1 and α̂2, with speed

√
n. And this tells you that ARE(α̂1, α̂3) = 0.

To show this, we first bound the variance of α̂3. By Cauchy-Schwartz inequality,

Var (α̂3) = Var

(
X(1) +X(n)

2

)
≤ 2(Var

(
X(1)

2

)
) + 2(Var

(
X(n)

2

)
).

And, use the property of this symmetric distribution, we can expect Var
(
X(1)

)
= Var

(
X(n)

)
.

Therefore

Var (α̂3) ≤ 4Var

(
X(n)

2

)
= Var

(
X(n)

)
By the probability equality,

P(X(n) ≤ x) = P(Xi ≤ x, i = 1, . . . , n) = P(X1 ≤ x)n = (
x− (α− 2)

4
)n,

we have the density for X(n) as

fX(n)
(x) =

n(x− (α− 2))n−1

4n
.

By simple integration we can find that

E(X(n)) =
n

n+ 1
=

4n

n+ 1
+ α− 2

and

E(X2
(n)) =

16n

n+ 2
+ 2(α− 2)(

4n

n+ 1
) + (α− 2)2.

Then the variance is given by

Var
(
X(n)

)
= E(X2

(n))− (E(X(n)))
2 =

16n

(n+ 1)2(n+ 2)
.

Thus, inflating α̂3 by
√
n will still give an asymptotic variance 0, which shows thatARE(α̂1, α̂3) =

0.
Another way is recognizing that asymptotically n(2 + α−X(n)) is following exponential

distribution. The argument is as follows. Denote T = n(2 + α−X(n)), and

P(T ≥ t) = P(X(n) ≤ 2 + α− a

n
) = (1− P(X1 ≥ 2 + α− a

n
))n = (1− a

4n
)n → e−

a
4 .

Therefore T is asymptotically distributed as exp(4). Since
√
n(α̂3) has a smaller variance of

T/
√
n, and the latter has asymptotic variance going to zero, we conclude that

√
n(α̂3) has

asymptotic variance zero, which indicates that ARE(α̂1, α̂3) = 0.
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