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1 A Statistical Model

We we say we are dealing with a statistical model, we mimic the randomness in the real
world by some model whose structure is clearly defined, and we use the data to nail down
the parameters - which we think define the model. How do we generate this process into
the formal mathematical language? We have to do some rough but more formal definitions.
They may differ from advanced textbooks a little bit.

Population - The target of your model. This is the pool of all the possible samples. If
you happened to know the population, you could see from above and do all the estimations
accurately. Unfortunately this is never true. The examples include: people’s height; living
time after the treatment; the possible waiting time of one server; etc. We often denote the
population by using random variables, say X.

Distribution - This is the main assumption equipped by the population. We assume
that the population is born with some specific distribution on it. The waiting time is
exponential; the height of human is normal; the number of cars passing one crossroad is
Poisson, and so on. This is never going to be true, but we always do the assumptions as
accurate as possible. We say X ∼ F , meaning that X is following some distribution F .

Parameters - This is the reason why we are using the distributions to mimic the real
world. The distribution is defined when the parameters are settled down. If you have λ
for Poisson(λ), you can tell every single possible probability under the distribution. If you
have the mean and the variance of a normal distribution, everything will be well defined.
The target of learning the distribution is therefore simplified to leaning the parameters. We
denote this as X ∼ Fθ. Unfortunately, the parameter is also unknown.

Sample - This is the so called data, which is a realization of the population in your
hand. They can be identically independently distributed (i.i.d.), which is the most common
and most fancy case. Or they can be awfully samples, which needs some special treatment.
Usually they are labeled as Xi, i = 1, 2, . . . , n. Notice that the sample is random variables.

2 Estimators

When we have the data in hand, we would like to use the data to estimate the parameters.
However we are not always interested in all the original parameters. We may only be inter-
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ested in some function of the parameters, denoted as g(θ). The weapon in our hands to nail
it down, is called statistics.

Statistic - This is a (measurable) function of the data, and the data only, which means
that it can not have any argument of the unknown parameters. Examples include sample
mean, sample variance, indicator 1(Xi ≤ c) for some known c, empirical distribution, and
so on. We denote the statistic as δ(X), where X= {Xi, i = 1, 2, . . . , n}.

When we are using δ(X) to estimate g(θ), we say that δ(X) is an estimator of g(θ).
The next thing is that, how to measure the behavior of an estimator? We have the following
tools to do this.

Loss function - This is defined as L(g(θ), δ(X)). This function can take a lot of forms,
but some common loose rules will apply:

L ≥ 0

L(g(θ), g(θ)) = 0, ∀θ

and L is monotone non-decreasing with the increase of the distance between g(θ) and δ(X).
These regulations are natural.

Since the loss function involves the data, this is also a random variable. To accurately
describe the ’loss’, we need the following tool.

Risk function - This function is defined as Rθ(δ, g) = Eθ L(g(θ), δ(X)). Notice that risk
function may differ with different θ values. The argument inside is the function form δ and
the function interested g.

Example(Regression). The data is defined as

Y = Xβ + e.

The loss function is taking the form as

L(β, β̂) = (Y −Xβ̂)2.

Minimizing using derivatives will yield

X′Y = X′Xβ̂,

which is
β̂ = (X′X)−1X′Y.
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