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1 Why we can not search in everything?

Remember we have defined a proper measure of the estimator performance which is risk
function Rθ(δ, g) = Eθ L(g(θ), δ(X)). Then naturally, we want an estimator which can
perform really good under different θ. Or mathematically, a universal minimizer of risk
function. That is, there exists δ∗ such that

∀δ, Rθ(δ, g) ≥ Rθ(δ
∗, g),∀θ.

But is that possible? Let’s look at a simple case.
Example(Silly guesser) Suppose we have a set of samples from normal distribution

N(θ, 1) and we want to estimate θ. One wise guy uses the sample mean to estimate θ, and
his competitor, a person with no statistics knowledge, claims θ = 5, always.

Under the square loss, with simple calculation we will know that the risk for the first
person is always 1/n. While the risk for the second person is (θ−5)2. This is fairly interesting.
If the true parameter is 0, or 8, the first person is clearly better. But what if, in a parallel
world, the θ is just 5? Then the guesser beat the wise statistician in the case.

This example shows a cruel but important fact. If our estimator δ yields Rθ(δ, g) > 0
for some θ = θ0, a guesser betting on θ0 will beat δ. Therefore such δ is not a universal
minimizer of risk function. Therefore, the only possible universal risk minimizer will make
the risk function zero, always.

This simply means we know g(θ), which is not possible.

2 Unbiasedness

So this is the reason we restrict the set of estimators. If we apply some regulations, and we
find the universal risk minimizer in that subset of estimators, then we may feel good about
it. Unbiased estimators are such a subset that is widely used.

The definition of unbiasedness is as follows. If δ(X) is unbiased, then

Eθ(δ(X)) = g(θ),∀θ.

Pay attention that the equation holds for all possible values of θ. For example, the estimator∑
iXi/(n+ 1) for the mean is unbiased when mean is zero, but biased otherwise. So this is

not an unbiased estimator. Here are some examples of unbiased estimators.
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For normal distribution N(θ, σ2), the following estimator

(X̄ =

∑n
i=1Xi

n
, S2 =

∑n
i=1(Xi − X̄)2

n− 1
)

is unbiased for (λ, σ2). It is a direct task to check this.
For Poisson distribution λ, both X̄ and S2, defined as before, are unbiased estimator for

λ. (Why?)
For an geometric distribution with only one observation, the unbiased estimator for the

success rate p, is 1(X = 0).

3 Bias-Variance Trade-off

Under squared loss, we have an important result:

R(δ, g) = E(δ(X)−g(θ))2 = E(δ(X)−E δ(X))2+E δ(X)−g(θ))2 = E(δ(X)−E δ(X))2+(E δ(X)−g(θ))2

The first part is the variance of δ(X), and the second part is the square of the bias. This
generally means that if you reduce the estimator’s variance, you probably introduce more
bias into the model.

For example, for normal model, the unbiased estimator is

S2 =

∑n
i=1(Xi − X̄)2

n− 1

and we have the MLE

S2 =

∑n
i=1(Xi − X̄)2

n

Here MLE has smaller variance, but MLE is biased, so MLE trades the bias with smaller
variance.
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