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1 Lower bound for the variance of unbiased estimators

The discussion is under the assumption of squared loss. Therefore we have the bias-variance
decomposition discussed last time. If we have an unbiased estimator, then the loss is equiv-
alent to the variance of the estimator. Here we propose a lower bound of the variance of the
unbiased estimators, which is independent of the form of the estimators.

Suppose we have a random sample X and some unbiased estimator 6(X) for g(f). Define a
score variable V = % In f(X;60). We can derive several properties for this variable. Under
some regular conditions (which enables us to switch the integration and the differential
operator),
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Using Cauchy-Schwartz inequality we have

\/Var (V) Var (§) > Cov (V,0) ,

which is just
Cov (V,6)" _ (4'(9))
Var (9) = =
ar(0) = 7 V) — E(V?)
We define the right hand side as the Cremer-Rao Bound, and E(V?) as the Fisher
information, denoted as I(6). By definition,
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2 Some properties of the Fisher information

If you have n iid samples, your Fisher information will be n times of the information carried
by a single observation. It is necessary to have iid setting here.
Another important equation which simplifies a lot of calculations is that
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A sketch of proof is as follows. From the original definition we have
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For the latter part, just move the second order differentiate operator out of the integration
sign and you will get zero.




